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A rotating system consisting of a slender massless viscoelastic shaft simply supported in
rolling bearings and a rigid massive disc mounted to the overhung end of the shaft is con-
sidered to study its stabilization against flutter. Instability and transverse vibration occurs
due to the internal friction in the shaft. It is shown in the paper that the disc can be sta-
bilized and its bifurcating self-excited vibration can be effectively reduced and modified by
contactless radial magnetic actuators, using two alternative control strategies – semi-active
utilizing constant or rotation-dependent actuator voltage or fully active with closed-loop
state-dependent feedback. The near-critical transverse disc vibration is analyzed using the
theory of Hopf bifurcation. Smooth, soft-type self-excitation is presented after activation of
the dynamic vibration control which prevents the system from sudden jumps of vibration
amplitude near the critical point.
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1. Introduction

It has been known for almost hundred years that rotors exhibit dynamic instability caused by
internal friction in flexible rotating elements or fluid-film dynamic interaction with rigid rotors
supported in slide bearings. The mechanism of instability of flutter type is now well recognized
and appropriate mathematical tools for analysis adopted and developed (see Osiński et al., 1998,
for history and more references). For three decades now attention has been focused on various
concepts of stabilization of such systems under increasing rotation speeds and on the near-critical
self-excited vibration control first of all to prevent rotors from subcritical unexpected jumps of
amplitude. Active stabilization and vibration control of rotors attracts attention of researchers
(see Kurnik and Perek, 2015; Przybyłowicz, 2017).

Rotating shafts, even perfectly balanced, may destabilize in form of self-excited vibrations be-
cause of the presence of internal friction in the shaft material, structural friction in the supports,
joints, etc. Self-excitation occurs when exceeding the critical rotation speed (usually greater than
the frequency of the first eigenmode of the shaft treated as a beam) and is characterized by a
sudden increase in transverse vibration amplitude. It should be emphasized that this is a com-
pletely different phenomenon from whirling of shafts unbalanced by eccentric location of their
center of gravity. The deflection line representing the equilibrium position of a horizontally sup-
ported shaft lies in a vertical plane while no rotation. A small angular velocity causes the shaft
to rotate around this position, gently deflecting the balance plane from the strictly vertical posi-
tion (in accordance with the direction of rotation). The shaft axis, however, remains stationary.
The increasing rotation speed deflects the equilibrium plane more and more from its original
position until the internal damping does not allow the shaft material to fully relax the stresses

1The content of this paper was a part of a presentation at the PCM-CMM-2019 Congress in Cracow.
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in one turn, which causes the shaft to perform an additional precession movement with a certain
circular frequency (not necessarily equal to the angular velocity) and amplitude. The current
equilibrium position changes its form into a qualitatively new oscillating state. This phenome-
non is known and referred to as the flutter, i.e. bifurcation of a static equilibrium position into
dynamic vibration of periodic nature.

The problem of flutter-type instability of rotating shafts has been a subject of many consi-
derations for a long time. The works by Tondl (1965), Shaw and Shaw (1989) and Muszyńska
(2005) deserve special attention in this field. The problem of eliminating this phenomenon, or at
least moving it outside the operational range of systems with flexible shafts, has also been addres-
sed by researchers. Structural modifications (changes in stiffness and damping) were available,
but those were passive measures incapable of bringing substantial improvement to the system
dynamics.

A particularly interesting solution based on the use of active materials exhibiting the shape
memory effect was a self-stabilizing shaft made of Nitinol alloy. The flexible shaft when spin-
ning in a deflected equilibrium dissipates energy due to the presence of internal damping. The
dissipation of mechanical energy increases the temperature of the alloy the shaft is made of
and finally reaches the point of martensitic transformation. This, in turn, leads to a significant
change (increase) in Young’s modulus and a decrease in the level of internal friction. Both factors
have a strong stabilizing effect on the dynamics of the rotating shaft, protecting it from self-
-excitation. This automatic self-defense mechanism of the system against the dangerous flutter
was conceived and presented by Kurnik (1995).

The concept of active stabilization of a rotating shaft discussed in this study is a method
based on the use of electromagnetic actuators (Przybyłowicz, 2015, 2017). The actuators are
not shaft supports as typical magnetic bearings (explored since the 1950s, see e.g. Schwei-
tzer et al., 1994) but additional elements (Mykhaylyshyn, 2011) contactlessly acting on the
disc (or a rimmed fan) mounted rigidly to the elastic shaft by a force of magnetic attraction.
The shaft itself is independently supported in mechanical rolling bearings, and a single pair
of electromagnetic actuators positioned in opposite is fixed in a close neighbourhood of the
disc rim. A similar solution was discussed by Shekhar et al. (2014) who numerically exami-
ned the applicability of electromagnetic actuators for active vibration control of long rotors
used in power-plant turbines. The authors noticed appreciable vibration reduction with the
PD control law related to the difference between nominal and instantaneous air-gap between
the rotor surface and actuator poles. Vibration control of a cracked rotor with an electro-
magnetic actuator was studied by Ebrahimi et al. (2018). They investigated a method of
optimal control (with two cost functions) to minimize the vibration and stress at the crack
section.

The system presented in this paper is a Jeffcott viscoelastic massless nonlinear shaft with
active stabilization, and the source of nonlinearity is the electromagnetic induction. Recently,
noteworthy contributions to the nonlinear analysis of Jeffcott rotors have been done by several
researchers. Bifurcation analyses of the Jeffcott-rotor system before and after application of
positive position feedback control were conducted by Eissa and Saeed (2018). They found an
approximate solution to the governing equations by the multiple scales perturbation method
and determined optimum working conditions of the control system.

This article focuses on two problems: finding to what extent the applied control based on
making use of electromagnetic actuators is efficient in enlarging the safe region of rotating
speed, that is increasing the critical threshold (linear analysis) and examining what happens to
the system just after the stability is lost and self-excited vibration occurs (nonlinear, bifurcation
analysis).
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2. Analysed system

Consider an overhung elastic shaft as shown in Fig. 1. Length of the entire shaft is l, its overhung
part is a. Both bearings are perfectly rigid, the rotor terminates with a disc mounted to its right
end. In a very close vicinity to the rim of the disc, there is a pair of spatially fixed electromagnets
localized in opposite. The electromagnets work independently of each other thus currents in their
windings are denoted by i1 and i2, respectively. The supply voltage yet remains the same and
amounts to U . Transverse displacement of the shaft at the disc position is x and contributes to
the size of the current gap between the rim and the electromagnet core ∆1 and ∆2. The nominal
gap (no lateral motion of the shaft) is δ, and its value is assumed to be small enough to consider
the magnetic field homogeneous on the one hand, and large enough to prevent the disc from
rubbing against the cores while vibration on the other.

Fig. 1. Model of an overhung shaft with a pair of electromagnets

The shaft rotates with angular velocity ω and may transversally deform in the perpendicular
directions during rotation, see Fig. 2 (displacement in the Oxz plane is only disclosed there).

Fig. 2. Shaft undergoing lateral displacement

Fig. 3. Transverse force Px and torque My applied to the disc, resulting in the displacement x and
deflection ϕy

The lateral displacement of the center of the disc is denoted by x and y, the angles of
deflection are ϕx and ϕy. The disc is perfectly rigid.
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In the following considerations, the shaft is modeled as a discrete massless viscoelastic element
to which a disc of mass m and moment of inertia (with respect to diameter) I2 is attached at
its right overhung end. The system has four degrees of freedom (two transverse displacements
and two rotations), the shaft provides stiffness and damping to the disc.
By making use of the method of influence coefficients, the relationships for the lateral dis-

placements and angles of deflection as functions of transverse forces and torques are

x = c11Px + c12My y = c11Py − c12Mx

ϕx = −c21Py + c22My ϕy = c21Px + c22My
(2.1)

where the influence coefficients are

c11 =
a3 + a2l

3EJ
c12 = c21 =

3a2 + 2al

6EJ
c22 =

3a+ l

3EJ
(2.2)

Consequently, the equations of motion of the disc (transverse motion and rotation) get the
following form

mẍ+ hẋ+ k11x+ k12ϕy − βωy = F1 − F2 ÿ + hẏ + k11y + k21ϕx + βωx = 0

I2φ̈x + 2I2ωϕ̇y − k21y + k22ϕx = 0 I2ϕ̈y − 2I2ωϕ̇x − k12x+ k22ϕy = 0)
(2.3)

where the inverse influence coefficients are

k11 =
12EJ

a3
3a+ l

3a+ 4l
k12 = k21 = −

6EJ

a2
3a+ 2l

3a+ 4l
k22 =

12EJ

a

a+ l

3a+ 4l
(2.4)

and where h is the coefficient of external damping, and

β = γ
EJ

ρA

π4

l4
(2.5)

reflects the internal damping resulting from the presence of internal friction in the shaft material.
It assumed that the material obeys Kelvin-Voigt rheological law according to which stress σ is
a function of strain ε and its rate

σ = E
(

1 + γ
∂

∂t

)

ε (2.6)

where γ is the retardation time of the K-V model. In equation (2.5) E is Young’s modulus of
the shaft, J – its cross-section moment of inertia, ρ – density, A – cross-section area, l – length.
Symbols F1 and F2 in Eq. (2.3) denote magnetic forces between the electromagnets and the
ferromagnetic disc.

3. Magnetic forces of attraction

As mentioned before, the magnetic gap between the disc rim and the core of electromagnetic
actuators is small enough to justify simplification of the magnetic field to be homogeneous. In
such a case, one can make use of well known formula for the magnetic attractive force acting on
the electromagnet armature

F =
B2S

2µ0
(3.1)

where B is magnetic induction, S – cross-section area of the magnetic core, µ0 – magnetic
permeability of vacuum. Assuming that the electromagnets operate within a range of currents
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far from magnetic saturation (linearized B-H characteristic), it is possible to derive an explicit
expression for the magnetic induction Bk in k-th electromagnet (k = 1, 2) versus current ik

B1 =
Ni1µ0
2(∆ − x)

B2 =
Ni2µ0
2(∆+ x)

(3.2)

where N is the number of wire turns, x – displacement of the armature (here, the disc rim), see
Fig. 4, ∆ is length of the magnetic circuit

∆ = δ +
lc
2µcr

(3.3)

in which lc is length of the magnetic core, µcr – relative magnetic permittivity of the material
the core is made of.

Fig. 4. Nominal gap δ, displacement of the armature (disc rim) x and resulting magnetic forces F1, F2

Applying Kirchhoff’s second rule to a single electric circuit powering the electromagnet, one
writes

U = ikR+N
dΦk
dt

(3.4)

where R is the electric resistance of the wires, and Φk is the magnetic flux in the k-th electro-
magnet (k = 1, 2). It is described by the equation

Φk =
1

2
N2Sµ0

ik
∆− (−1)kx

(3.5)

If so, then

U = i1R+
1

2
N2Sµ0

d

dt

( i1
∆+ x

)

and U = i2R+
1

2
N2Sµ0

d

dt

( i2
∆− x

)

(3.6)

Differentiating Eqs. (3.6), one gets

U = i1R+
N2Sµ0
2(∆ + x)2

[di1
dt
(∆+ x)− i1

dx

dt

]

(3.7)

and

U = i2R+
N2Sµ0
2(∆ + x)2

[di2
dt
(∆− x) + i2

dx

dt

]

(3.8)

where the overdots symbolize the first differentiation with respect to time. Finally, the attractive
magnetic forces are

F1 =
B21S

2µ0
=
N2Si21µ0
8µ0(∆− x)

and F2 =
B22S

2µ0
=
N2Si22µ0
8µ0(∆+ x)

(3.9)
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and their difference (the resultant load exerted upon the disc) is

F1 − F2 =
N2Sµ0
8

[ i21
(∆− x)2

−
i22

(∆+ x)2

]

(3.10)

From (3.7) and (3.8), one infers that dynamical equations for the currents ik are

di1
dt
= 2
(U − i1R)(∆ − x)

N2Sµ0
−
i1
∆− x

x

dt

di2
dt
= 2
(U − i2R)(∆ + x)

N2Sµ0
+
i2
∆− x

x

dt

(3.11)

As can be seen in the equations describing currents i1 and i2, there always appears supply
voltage U which can be a constant or variable valued quantity. Now it is time to incorporate a
strategy to control the performance of the electromagnetic actuators. Basically, one may conceive
two approaches to the control – passive (static) and/or active (dynamic) one. Let it be expressed
by a simple formula

U =

static control
︷ ︸︸ ︷

U0 + ksω ± kdẋ
︸︷︷︸

dynamic control

(3.12)

The static (semi-active) control consists in applying just a constant U0 bias voltage to the
electromagnetic coils, or it can be extended by adding a proportional term with some gain ks.
The proportionality may be related to any parameter of the system, but here the natural and
obvious choice is the angular velocity ω. On the other hand, the active method should enable
the actuators to react to current dynamical changes of the system, i.e. to its state. The state is
described by the current position and velocity of the disc. In this work, the control based only
on the transverse speed of the disc in the direction x is employed to suppress possible lateral
vibration. The differential gain is kd.

4. Stability of the system

As mentioned in the introduction, fast rotating elastic shafts exhibiting some viscoelastic proper-
ties may experience dynamic instability in form of flutter-born whirling due to internal damping.
The straight (vertical shafts) or bent due to gravity (horizontal shafts) equilibrium line of the
rotor no longer remains at rest and starts to spatially vibrate (rotate) with some whirling velo-
city Ω. This happens when the rotation speed ω reaches its critical threshold. The static equi-
librium position (straight or bowed) becomes unstable and turns into a new equilibrium state,
the oscillating, whirling mode. Such a loss of stability is known as flutter, or Hopf bifurcation.
Find now the critical rotation speed of the considered system by investigating its stability

through the eigenproblem of the linearized mathematical model. To this end, introduce new
variables u1, . . . , u10 first, to convert four differential equations of motion (2.3) of the second
order into eight ones of the first order plus two equations (3.11) for the currents. To enhance the
analysis, do it around the equilibrium position for which all new variables are zeros. To achieve
this, one should substitute

x = u1 ẋ = u2 y = u3 ẏ = u4 ϕx = u5

ϕ̇x = u6 ϕy = u7 ϕ̇y = u8 i1 = u9 +
U

R
i2 = u10 +

U

R

(4.1)

In that case, the voltage will be U = U0 + ksω ± kdu2.
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Rewrite now dynamical equations of motion (2.4) and (3.11) in the new variables

u̇1 = u2

u̇2 = −k
′

11u1 − hu2 + βωu3 − k
′

12u7

+
N2Sµ0
4m

[(

u9 +
U0+ksω−kdu2

R

∆− u1

)2

−

(

u10 +
U0+ksω+kdu2

R

∆+ u1

)2]

u̇3 = u4 u̇4 = −βωu1 − k
′

11u3 − hu4 + k
′

12u5

u̇5 = u6 u̇6 = k
′′

12u3 − k
′′

22u5 − 2ωu8

u̇7 = u8 u̇8 = −k
′′

12u1 + 2ωu6 − k
′′

22u7

u̇9 =
−2Rru9
N2Sµ0

(∆− u1)− u2
u9 +

U0+ksω−kdu2
R

∆− u1

u̇10 =
−2Rru10
N2Sµ0

(∆+ u1) + u2
u10 +

U0+ksω+kdu2
R

∆+ u1

(4.2)

where

k′ij =
kij
m

k′′ij =
kij
I2

i, j = 1, 2 (4.3)

see definitions (2.4). Express now the system of ten equations (4.2) in a matrix form by intro-
ducing the vector u = [u1, u2, u3, u4, u5, u6, u7, u8, u9, u10]. A brief form of (4.2) will be then

u̇ = f(u, ω) where f(u, ω) = A(ω)u+N(u, ω) (4.4)

in which the right hand side is separated into the linear A and nonlinear N part. The presence
of ω in (4.4) emphasizes the role of the angular velocity as the critical bifurcation parameter.
The matrix A of the linearized system (round the zero equilibrium position) is as follows

A(ω) =





















0 1 0 0 0 0 0 0 0 0
a21 a22 a23 0 0 0 a27 0 a29 a210
0 0 0 1 0 0 0 0 0 0
a41 0 a43 a44 a45 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 a63 0 a65 0 0 a68 0 0
0 0 0 0 0 0 0 1 0 0
a81 0 0 0 0 a86 a87 0 0 0
0 a92 0 0 0 0 0 0 a99 0
0 a102 0 0 0 0 0 0 0 a1010





















(4.5)

where the non-zero elements are

a21 = −
k11
m
+
N2Sµ0(U0 + ksω)

2

mR2∆3
a22 = −

h

2m
−
N2Sµ0kd(U0 + ksω)

mR2∆2

a23 = βω a27 = −
k12
m

a29 =
N2Sµ0(U0 + ksω)

2mR∆2
a210 = −

N2Sµ0(U0 + ksω)

2mR∆2

a41 = βω a43 = −
k11
m

a44 = −
h

2m
a45 =

k12
m



532 P.M. Przybyłowicz, W. Kurnik

a63 =
k12
I2

a65 = −
k12
I2

a68 = −2ω

a81 = −
k12
I2

a86 = 2ω a87 = −
k22
I2

a92 = −a102 = −
U0 + ksω

R∆
a99 = a1010 = −

2R∆

N2Sµ0

Having the above matrix defined, one can proceed with the examination of the system stability
in terms of the critical threshold (angular speed). To determine its value, resolve the following
eigenproblem first

{A(ω) − rI}q = 0 (4.6)

The solution to (4.6) yields five pairs of complex conjugated eigenvalues. The angular speed
becomes critical if the real part of one of such pairs exceeds zero and becomes positive (while
the rest are negative). In other words, we say ω = ωcr when max{Re(r1), . . . ,Re(r10)} = 0. Let
the eigenvalue having the maximum real part (at criticality reaching zero) be denoted by ξmax.
Analyze now the course of ξmax in function of quasi-statically increasing angular velocity ω. The
moment at which ξmax = 0 means the loss of the system stability and the onset of flutter-type
self-excited vibration of the disc. This situation is depicted in Fig. 5. Calculations have been
carried out for parameters disclosed in Tables 1 and 2.

Table 1. Material and geometrical parameters of the rotating shaft

Length l 1.0m

Diameter d 0.02m

Overhung part a 0.2m

Density ρ 7800 kg/m3

Disc radius r 0.125m

Disc thickness b 0.05m

Young’s modulus E 2.1 · 1011 N/m2

Retardation of K-V model γ 0.0001 s

External damping h 2.0 kg/(m2s)

Table 2. More important parameters of the electromagnetic system

Length of magnetic core lc 0.2m

Size of nominal gap δ 0.01m

Number of wire turns 500

Electric resistance R 8.0 Ω

Relative magnetic permeability of core µ 5000

Supply voltage U0 0-50V

The course of ξmax = ξmax(ω) shown in Fig. 5 clearly indicates that nearly below 500 rad/s
the system undergoes destabilization (ξmax  0) and starts to vibrate. The frequency of this
vibration is exactly the imaginary part of this eigenvalue. No control has been applied to the
system behaving as presented in Fig. 5. This is its own endowed nature determined by the
material, environment and the applied assumptions.
Now, look for other (possibly greater) values of the critical rotation speed if some control

strategy through electromagnetic forces is turned on in the system. Consider first the simplest
approach based only on just activating the electromagnets and supplying them with a constant
voltage U0. The result is shown in Figs. 6 and 7.
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Fig. 5. Evolution of the maximum real part of the eigenvalues (4.6) vs. rotation speed of the shaft

Fig. 6. Critical rotation speed for no control (as in Fig. 5) and static operation of the electromagnets
powered by 10V

Fig. 7. Critical rotation speed for increased voltage supplying the actuators. The threat of
destabilization (in the right picture)

It is observed that the rotating system without any control destabilizes at, roughly, 400 rad/s.
Switching on the supply voltage of 10V increases the critical rotation speed up to nearly
500 rad/s. Further growth of U0 leads to even better results (see left picture in Fig. 7, where ωcr
is about 1000 rad/s), but one should bear in mind that such a simple control method has its
limitation. The disc entrapped between two electromagnets placed in opposite undergoes greater
and greater attracting force with increasing U0. The attraction acts in opposite directions thus
the central position of the disc is no longer stable. Exceeding a certain value of U0 will cause
the disc to be attracted to one of the electromagnets and permanent bending of the shaft. Such
a situation, which may occur even without rotation, is called divergence and would be a cata-
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strophic loss of stability of the entire system. This, consequently, eliminates this simple method
as a safe strategy for stabilizing the shaft.

Much worse results are obtained by another static method of stabilization based on pro-
portional coupling of the supply voltage U with the angular velocity ω: U = ksω. Figures 8
and 9 present growth of ωcr for a few gains ks. It is clearly seen the eigenvalue with ξmax is
being chased by another eigenvalue whose real part particularly gains with ω and finally wins
the race becoming a new leader holding the value ξmax. The proportional approach yields poor
increments in ωcr and is very sensitive to divergence at the same time.

Fig. 8. Proportional feedback. Effect of ks on the course of the real part of the decisive eigenvalue. No
visible effect on ωcr

Fig. 9. Proportional feedback leading to a small growth in ωcr (on the left picture) and inevitable
divergence (on the right)

To summarize, among static control strategies, the simple U0 = const method offers much
better results although it is still burdened with a threat of catastrophic divergence. Expectedly,
consider now the dynamic, active approach in which a small and safe U0 is supplied to the elec-
tromagnets and practically all the voltage comes from electromagnetic induction. By coupling U
with the current state of the disc (precisely, its transverse velocity): U = U0 ± kdẋ (the sign ±
depends on whether the disc goes towards the electromagnet or moves away in the opposite
direction). The results are disclosed in Figs. 10 and 11.

Two advantageous effects are observed while making use of the active U = U0± kdẋ method
of stabilization – a significant rise in the critical rotation speed and no danger of disastrous
divergence to the system. A summary of the effectiveness of this method is given in Fig. 12 in
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Fig. 10. Velocity-based dynamical control. Large growth of ωcr for a moderate gain kd

Fig. 11. Further increment in for greater kd. No divergence observed

Fig. 12. Critical rotation speed vs. gain in the dynamic control and a few bias voltages

which a rise in ωcr by several times is clearly noticed. Does it mean that kd can be infinitely
increased? Yes, it does. But it would not enlarge the critical speed any more because of magnetic
saturation. This is the physical limit of the efficiency of the applied control method incorporating
electromagnetic actuators.
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5. Near-critical behaviour

After exceeding the critical speed, the system loses its stability. The static equilibrium bifurcates
into a new state – flutter-type vibration in form of some limit cycle. Moreover, the cycle itself can
be either orbitally stable or not. In the first case, one observes smooth and safe evolution (growth)
of the amplitude of self-excited vibration with the increasing rotation speed ω, in the latter there
may occur a sudden jump in the vibration amplitude, even below the critical threshold ωcr. That
is a much worse and hazardous situation as it may be surprising and threatening to the integrity
of the system. To resolve this problem, analyze now the near-critical nonlinear behaviour of the
system.
New, oscillating near-critical solution can be found according to the Hopf method. Firstly,

conditions satisfying Hopf theorem have to be checked before constructing a bifurcating solution.
Return now to the implicit form of equation of motion (4.4) with the right-hand side denoted
as A(ω)u+N(ω;u) = f(ω;u). Necessary Hopf conditions require that:

1. The equilibrium position u = 0 is a fixed point of the system of equations, i.e. f(ω;0) = 0.

2. Function f(ω;u) is analytical with respect to ω and u around (0;0) ∈ ℜ1 ×ℜ10.

3. The matrix A has a pair of conjugate complex eigenvalues r(ω) = ξmax(ω) + iη(ω) such
that: ξmax(0) = 0, dξmax/dω|ω=0 6= 0, η(0) = Ω0 > 0.

4. All the rest eigenvalue as of the matrix A have negative real parts.

5. The nonlinear function fulfills: N(0;u) 6= 0.

Having checked Hopf conditions in the analyzed system, the bifurcating near-critical solution
is sought in form of a infinite series in small parameter ε and containing harmonic functions

u =
∞∑

n=1

1

n!
u(n)(Ωt)εn (5.1)

where u(n) are harmonics to be found, and

Ω = Ω0 +
∞∑

n=1

1

n!
Ωnε

n (5.2)

is the frequency of the limit cycle also expanded in the power series of ε. Ω0 is the initial flutter
frequency, the terms Ωn are to be found. To close the solution, one expresses the bifurcation
parameter (angular speed here) in form of the analogous series

ω = ωcr +
∞∑

n=1

1

n!
ωnε
n (5.3)

with unknown parameters ωn. Truncating the series u at the first two terms and applying them
to u(1), one obtains

ω = ωcr +
1

2
ε2ω2 ⇒ ε =

√

2
ω − ωcr
ω2

(5.4)

then

u = u(1)
[(

Ω0 +Ω2
ω − ωcr
ω2

)

t
]
√

2
ω − ωcr
ω2

(5.5)

According to the Iooss and Joseph (1980) method, the coefficients ω2 and Ω2 are

ω2 = −
1

3

Re{Ψ2}
dξmax
dω

Ω2 =
1

3
Im{Ψ2}+ ω2

dη

dω
(5.6)
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where the complex number Ψ2 is determined from the relation

Ψ2 =
3

2

10∑

i=1

10∑

j=1

10∑

k=1

∂2fi(ωcr, 0)

∂uj∂uk
(qjKk + qjLk)q

∗

i + 3
10∑

i=1

10∑

j=1

10∑

k=1

10∑

l=1

∂3fi(ωcr, 0)

∂uj∂uk∂ul
qjqkqlq

∗

i (5.7)

The components of the vectors K and L are found from non-singular matrix equations

K = −2A−1(ωcr)
10∑

j=1

10∑

k=1

∂2f(ωcr,0)

∂uj∂uk
)qjqk

L = −{A(ωcr)− 2iΩ0}
−1
10∑

j=1

10∑

k=1

∂2f(ωcr,0)

∂uj∂uk
qjqk

(5.8)

where the base vectors q and q∗ come from the eigenproblems

{A(ωcr)− iΩ0}q = 0 {AT(ωcr) + iΩ0}q
∗ = 0 (5.9)

after applying the orthogonality

10∑

i=1

qiqi = 0 (5.10)

and normalization condition

10∑

i=1

qiqi = 1 (5.11)

The bar over qi denotes complex conjugate. Finally, the first approximation of the bifurcating
solution is a harmonic function

u(1)(ω; t) = Re
{

q exp
[

i
(

Ω0 +Ω2
ω − ωcr
ω2

)

t
]}

(5.12)

The most important issue raised at the beginning of this Section is finding out whether the
self-excited vibration is orbitally stable or not. Orbital stability means soft, supercritical flutter,
relatively safe to the system. Otherwise, the shaft and disc are threatened with subcritical, hard
type of self-excitation with jumping vibration amplitude.

The bifurcating near-critical solution is orbitally stable if the Floquet coefficient σ remains
negative. It can be determined with the accuracy up to reminder of orders higher than four

σ(ε) = Re{Ψ2}ε
2 +O(ε4) where ε2 = 2

ω − ωcr
ω2

(5.13)

In Figs. 13 and 14 diagrams of σ are shown for all analyzed cases of the applied control, that is
both static and dynamic approach. Apparently, and luckily, in each case the Floquet exponents
are negative numbers which means that the system is protected from a very dangerous scenario
of hard self-excited high-amplitude vibration. The numbers, however, are small. For the static
control they converge to zero (U0 = const ), see the left picture in Fig. 13, or may even become
positive (the right picture in Fig. 13). Yet before it happens, the system will diverge from the
equilibrium (loss of stability in the linear range). Again, much more secure results are given by
the dynamic control (U = U0 + kdω), see Fig. 14.
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Fig. 13. Floquet exponent of the bifurcating solution in the static control (fixed bias voltage on the left,
voltage proportional to rotation speed on the right)

Fig. 14. Floquet exponent in the dynamic control (zero bias voltage on the left,
a moderate U0 on the right)

6. Concluding remarks

The analyzed model is mechanically linear. The source of nonlinearity is electrodynamics only.
The examined system is assumed to operate far from the saturation.

The instability is caused by the presence of internal friction in the shaft material. The
Kelvin-Voigt rheological model is incorporated to take the internal damping into account. The
making use of electromagnetic actuators has proved to be efficient in increasing the critical
roation speed. The electromagnets act as external dampers since they dissipate energy in RL
circuits. Both control strategies (static and dynamic) are effective, however, the static one may
lead to devastating divergence in case of excessive gains. The dynamic approach in which the
voltage controlling operation of the electromagnets is a sum of a constant bias voltage and a
component proportional to transverse velocity of the laterally vibrating disc has turned out to
be particularly efficient as it enables a few fold growth of the critical speed without the danger
of devastating divergent loss of stability (rubbing contact of the fast rotating disc with fixed
electromagnets).

Both strategies are confirmed to be safe in terms of the nonlinear response as any control
method based on operation of electromagnets makes the system supercritical below the satura-
tion threshold (soft and safe type of self-excitation). Nonetheless, this conclusion can only be
applied to linear overhung shafts and cannot be extrapolated to rotors exhibiting other nonlinear
mechanical effects like von Karman’s (progressive) or geometrical (curvature born, degressive)
nonlinearity.
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